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Machine Learning-Based Coding Unit Depth
Decisions for Flexible Complexity Allocation

in High Efficiency Video Coding
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Abstract— In this paper, we propose a machine learning-based
fast coding unit (CU) depth decision method for High Efficiency
Video Coding (HEVC), which optimizes the complexity allocation
at CU level with given rate-distortion (RD) cost constraints.
First, we analyze quad-tree CU depth decision process in HEVC
and model it as a three-level of hierarchical binary decision
problem. Second, a flexible CU depth decision structure is
presented, which allows the performances of each CU depth
decision be smoothly transferred between the coding complexity
and RD performance. Then, a three-output joint classifier
consists of multiple binary classifiers with different parameters is
designed to control the risk of false prediction. Finally, a sophis-
ticated RD-complexity model is derived to determine the optimal
parameters for the joint classifier, which is capable of minimizing
the complexity in each CU depth at given RD degradation
constraints. Comparative experiments over various sequences
show that the proposed CU depth decision algorithm can
reduce the computational complexity from 28.82% to 70.93%,
and 51.45% on average when compared with the original HEVC
test model. The Bjøntegaard delta peak signal-to-noise ratio
and Bjøntegaard delta bit rate are −0.061 dB and 1.98% on
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average, which is negligible. The overall performance of the
proposed algorithm outperforms those of the state-of-the-art
schemes.

Index Terms— High efficiency video coding, coding unit,
machine learning, support vector machine.

I. INTRODUCTION

H IGH Definition (HD) and Ultra-High Definition (UHD)
videos are becoming more and more popular since

they can provide higher perceptual quality and create a more
realistic viewing experience, which has a promising video
market, such as TV broadcasting, IMAX movie, immersive
video communication, network video streaming and HD video
surveillance, etc. However, the data volume of these
HD and UHD videos increase dramatically as the resolution
and frame rate increase. For example, an 8K × 4K@120fps
video has 11.5 Giga Bytes per second raw data, which requires
highly efficient compression. To address this problem, the Joint
Collaborative Team on Video Coding (JCT-VC) has developed
the High Efficiency Video Coding (HEVC) standard [1] with
50% bit rate reduction beyond the H.264/AVC high
profile. The HEVC adopts advanced coding techniques,
including highly flexible quad-tree coding block partition,
INTRA prediction with 35 modes, discrete sine transform,
sophisticated interpolation and filtering etc. These techniques
significantly improve the compression efficiency. However,
they cost intensive computational complexity and increase
hardware costs, including computing power, memory access,
storage space and energy consumption, which hinder HD/UHD
videos in real-time applications, such as live TV broadcasting,
mobile video communication and surveillance.

The core of the coding layer in HEVC is the Coding
Tree Unit (CTU), conceptually similar to the macroblock in
H.264/AVC, consisting of a Luma Coding Tree Block (CTB),
the corresponding Chroma CTBs, and syntax elements. A CTB
may contain only one Coding Unit (CU) or be split to
multiple CUs, with the size of 8 × 8, 16 × 16, 32 × 32 or
64 × 64 [1]. Each CU and associated Coding Blocks (CB)
can be further divided into smaller Prediction Units (PUs)
with various modes, including SKIP or MERGE mode,
8 INTER modes and 2 INTRA modes. Finally, the residues
of the PU will be processed by a tree of Transform
Units (TUs). The optimal CU, PU, and TU are then determined
based on recursive Rate-Distortion (RD) cost comparisons,
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where the “try all and find the best” strategy is of extremely
high complexity.

Many researchers have devoted their efforts on optimizing
the coding complexity of HEVC encoder [2]–[10]. Li et al. [2]
proposed an algorithm that adaptively determine CU depth
range based on the depth information of previously coded
slices and CUs. The CU depth range is adapted at slice level
to avoid potential encoding complexity. In [3], Xiong et al.
proposed CU selection algorithm based on Pyramid Motion
Divergence (PMD) formed by optical flow of down-sampled
frames. Then, whether split the CU or not was determined
by K-nearest neighboring like algorithm. Basically, it exploits
motion properties and spatial neighboring correlations of the
video content while doing the CU depth decision optimization.
However, optical flow estimation and PMD comparison among
hundreds of samples in First-In-First-Out (FIFO) stack causes
large complexity overhead. In [4], Shen et al. exploited the
RD cost and mode correlations among different depth levels
and/or spatially neighboring CUs so as to skip some rarely
used CU and PU modes for INTRA coding. It is a joint
optimization of the CU depth decision and PU mode decision.
In terms of the INTER frame optimization, Shen et al. [5]
introduced early termination based on motion homogeneity
and SKIP mode checking to skip the complex Motion
Estimation (ME) process. Similarly, Goswami et al. [6]
proposed a CU quad-tree early termination algorithm based
on the RD cost difference between the root and children CUs.
In [7], the CU depth is determined based on RD cost
comparisons among 2N × 2N PU modes in different CU depth
levels. Also, MERGE or SKIP mode is early decided based on
the contextual mode information of neighboring CUs. These
algorithms focus on the CU depth or size decision. Besides,
optimizations on PU mode prediction were investigated
in [8]–[10]. In [8], Lee et al. proposed a PU decision
method which computed the priority of all INTER prediction
modes and performed the ME only on the selected PU mode.
Zhao et al. [9] computed a 2D distance for each PU mode
and applied the optimal stopping theory to early terminate
the PU searching process. Pan et al. [10] proposed an early
MERGE mode decision method for both root and children CUs
based on hierarchical depth correlation and ME information.
Basically, these algorithms are based on the statistics on
the RD cost properties, temporal and spatial correlation, and
then the PUs are early decided based on some hard or soft
thresholds, which limit their applicability and may be difficult
to handle the situations with various contents, parameters
and/or complex coding structures.

Machine learning is a hotspot and widely applied in artificial
intelligence, pattern recognition and signal processing, since
it learns from big data of complex situations and gives the
optimal solution. With this excellent property, researchers
attempted to apply learning based algorithms in video coding
for better performances. In [11], Martinez-Enriquez et al.
proposed a two-level classification based approach for the
INTER mode decision in H.264/AVC, where a normalized
RD cost by Sum of Absolute Difference (SAD) was adopted
as a new feature for Support Vector Machine (SVM) classifier.
In addition, RD cost increment caused by misclassification

was considered in the SVM training. Zhang et al. [12], [13]
proposed a statistical model for SKIP/DIRECT mode decision
in H.264/AVC based multiview video coding, where
the early termination decision was made based on the
Laplace RD cost distribution and inter-view correlation.
Sung and Wang [14] adopted clustering to predict the INTER
modes for H.264/AVC based on a 3D feature vector consists
of spatial, temporal and SKIP/DIRECT mode RD cost.
Additionally, multi-phase classifications were presented.
However, this approach highly depends on the global
statistical information of previous coded blocks.
In [15], Chiang et al. proposed two levels of classifications by
using the Back Propagation Neural Network (BPNN), where
the first level was for the mode decision and the second
level was for the reference frame selection. A subset of the
mode candidates was finally selected. The RD cost increase
and complexity reduction can be adjusted by controlling the
number of the mode candidates. In addition, decision tree
was applied to tackle the mode prediction in H.264/AVC [16]
and separate out SKIP mode in stereo video coding [17].
In [18], Kim and Kuo handled the feature space by considering
the risks of wrong mode decision, and meanwhile, this
scheme could have a trade-off between RD performance and
complexity by using different mode decision parameters.
However, these schemes were proposed for H.264/AVC,
which may not be efficient as they are directly applied to
HEVC, since H.264 and HEVC have different coding block
structures and modes.

In machine learning based HEVC optimization,
Shen and Yu [19] proposed a CU splitting early termination
algorithm based on weighted SVM for the latest HEVC
standard, in which the RD loss caused by misclassifications
was modeled as weights in offline SVM training. Meanwhile,
feature selection optimization was also presented to reduce
the size of feature space. Shanableh et al. [20] and
Peixoto et al. [21] proposed a fast CU size decision
algorithm for transcoding bit stream from MPEG-2 and
H.264/AVC to HEVC, in which the information of the
MPEG-2 and H.264 bit stream was extracted and adopted as
input features of the SVM classifier. Additionally, statistical
thresholds were added to tackle the inaccurate prediction. The
performances of these algorithm highly depend on the feature
selection and the prediction accuracy. Once the prediction is
not so accurate for an un-expected data set, they may cause
large RD degradation. The existing works generally used a
single or ensemble classifier to do the classification, in which
the coding performances, such as the RD cost and complexity,
cannot be modified or transformed. These encoders thereby
can hardly adapt to different system requirements.

In this paper, we propose a machine learning based fast
CU depth decision for HEVC. The major contributions are:
1) The HEVC CU depth decision is modeled as a hierarchical
binary classification problem. 2) A flexible CU depth decision
structure is presented for each decision level, which can take
advantages of three existing CU depth decision structures.
3) A joint classifier consisting of multiple SVM classifiers is
proposed by considering the risk of false prediction. 4) A novel
optimal parameter determination algorithm of training the
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TABLE I

CU DEPTH DISTRIBUTION AND POTENTIAL TIME SAVING RATIO [%]

joint classifier is proposed for CU level complexity allocation,
which has a good trade-off between RD cost and complexity.
This paper is organized as follow, Section II presents the
motivation and analyses of CU depth decision. Section III
presents the proposed machine learning based CU depth deci-
sion algorithm, including the coding structure, joint classifier,
feature selection and optimal parameter determination. Then,
experimental results and analyses are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. MOTIVATION AND STATISTICAL ANALYSES

In the latest HEVC standard, the luma CTB supports
quad-tree CU partitions with four level of CU depth from
0 to 3, which corresponds to CU size from 64 × 64 to
8 × 8. The HEVC encoder checks 4i , i ∈ [0, 3], CU par-
titions for depth level i , which is 1 + 4 + 16 + 64 = 85
CU partitions in total. However, only parts of them will
be finally selected as the optimal CU partitions, which are
from 1 to 64. Therefeore, if we can precisely predict the
best CU mode, 84 to 21 CU modes are not necessary to
be checked. TABLE I shows the CU depth distribution and
theoretical time saving ratio. D0 to D3 indicates the four depth
levels. Five diverse sequences with various resolutions and
properties were encoded for statistical analyses. We find that
there are 46.80%, 33.22%, 18.50% and 1.53% CUs selected
the depth 0, 1, 2 and 3 as its best CU depth, respectively. The
average probability increases as the depth level decreases and
as the Quantization Parameter (QP) increases. On the other
hand, the amount of CUs with depth 3 is very small. The
right three columns are theoretical maximun time saving ratio
for different Decision Levels (DLs) when the CU partition
is 100% acurately predicted and selected. DL1 to DL3 are

Fig. 1. Classifier distribution for a CTB.

Fig. 2. Flowchart of compressing a CTB.

three DLs of non-spliting or futher spliting prediction. We can
find there would be 75.19% complexity reduction on average
if all CU depth levels can be accurately predicted.

III. THE PROPOSED MACHINE LEARNING BASED

CU DEPTH DECISION ALGORITHM

A. Classification Problem Formulation for
CU Depth Decision in HEVC

For each CTB, there are (24+1)4 + 1 = 83522 different
combinations in CU size for a CTB partition when the allowed
CU depth is from 0 to 3. There are too many types of
CU partitions (classes) and it is hard to be solved by a single
multi-class classification. Fortunately, we handle this com-
plicated multi-class problem with three-level of hierarchical
binary classifications. Fig. 1 shows the classifiers assigned for
the depth decision in a CTB. The quad-tree is corresponding
to the CU partition for a CTB and each horizontal line is a
classifier. Above and below the line are two classes, i.e. split
or non-split. There are 3 kinds of classifiers from level 1 to 3,
also called DLs, which are labeled with red, blue and green
color, respectively. Meanwhile, there could be 1+4+16 = 21
classifiers or 3 classifiers that repeated 1, 4 and 16 times
respectively to solve the whole classification problem.

B. The Proposed Structure for Fast CU Depth Decision

The CU depth decision in HEVC is a recursive process, as
shown in Fig. 2, where Dn represents a process of checking
the CU at depth level n. For example, D0 checks CU depth at
level 0 where the CU size is 64 × 64. Pn(i) is the basic
component for the recursive CU depth decision in HEVC,
where n ∈ {0,1,2,3} is the depth level, i ∈ {1,2,3,4} is the
index of sub-CUs,. Each Pn(i) n ∈ {0,1,2} includes one Dn

and four Pn+1(i), while the P3(i) is D3. The CTB is firstly
checked with CU depth 0, i.e. D0. Then it is checked with
four P1(i). Each P1(i) needs recursively checking D1 and
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Fig. 3. Pn(i) component, n = 0,1,2, i = 1,2,3,4. (a) Pn(i) in HM. (b) Pn(i)
in early termination scheme (Shen’s scheme) [19]. (c) Pn(i) in a fast scheme.
(d) Proposed Pn(i) component.

four P2(i). The Pn(i) is recursively checked until reaches D3.
After all CU depths/sizes have been checked, the optimal CU
size or their combinations will be selected as the one has the
minimum RD cost. Since all CU sizes from 64 × 64 to 8 × 8
shall be checked, it is very time consuming as analyzed in
Section II. Since Pn(i) is the basic component for the recursive
CU decision process in Fig. 2, we can analyze the Pn(i) instead
of the whole CU decision process. Fig. 3(a) shows the Pn(i)
component in the original HEVC test model (HM), which
checked one Dn and four Pn+1(i). This “try all and select
the best” strategy has the best RD performance but with the
highest complexity.

To reduce the complexity of the CU depth decision
process, many fast algorithms or early termination
algorithms [3]–[5], [19] have been investigated.
In [19], Shen et al. presented an early termination in
which Dn is firstly checked and then a classification is
applied to predict whether the CU coding process shall
be early terminated or not, as shown in Fig. 3(b). In this
structure, on matter which CU depth is the optimal, Dn

is always checked. This Dn checking is unnecessary when
Pn+1(i) is the best, which causes computational complexity
overhead. Additionally, false acceptance of “N” leads to
unnecessary Pn+1(i) checking. False acceptance of “Y”
will reduce the complexity and meanwhile miss the optimal
CU size, which cause RD degradation. This structure is
efficient in the case that Dn is with low complexity and poses
large probability of being the optimal. However, according to
the statistical results in TABLE I, we found the probabilities
for each CU depth distribute evenly, which may make the

Fig. 4. Flowchart of the joint classifier, where 1, −1, and, U corresponds
to A, B and C in Fig. 3(d).

Structure (b) not so efficient. For example, for the case that
Depth 3 is the best CU depth level, even though the Depth 3
can be precisely predicted, this framework has to check
Depth 0 to Depth 2, which are unnecessary.

To tackle these unnecessary checking and minimize the
coding complexity, we propose a new structure where the
classification is performed to predict the CU depth before
checking Dn , as shown in Fig. 3(c). If Dn is predicted to be the
optimal, only Dn will be checked. Otherwise, only Pn+1(i) will
be checked. In this structure, the advantage is no additional
complexity overhead and the complexity could be minimized if
the classification is accurate. However, the disadvantage is the
byproduct information of the coded Dn is not available for the
CU depth prediction. Additionally, the RD performance highly
depends on the prediction accuracy of the classification, since
misclassifications (either false acceptance or false rejection)
will change the optimal CU partition and consequently cause
the RD degradation. Unfortunately, due to the variety of the
video contents, CU modes, and limited available information,
the prediction accuracy of the classifiers can hardly be guar-
anteed in sufficient high level, e.g. 95%, which may fail to
maintain the compression efficiency.

To control the potential RD degradation and make the
structure more flexible to different prediction accuracies, we
proposed a more advanced structure which integrates the
Structure (a) and Structure (c) together, as shown in Fig. 3(d).
In the figure, the components with red color and purple color
are the Pn(i) in HM, i.e. Structure (a). The components with
blue and purple color are the Pn(i) in (c). The classifier
in Fig. 3(d) has three outputs, i.e. A, B and C. If the
choice of C is 100%, i.e. the output is fixed to C, this
structure is transformed to be Structure (a), which has the best
RD performance and highest complexity since it tries all and
selects the best. If the prediction of C is 0%, i.e. no output
to C, this Structure (d) is transformed to be Structure (c),
which has the lowest complexity without any unnecessary
checking. Actually, the proposed flexible structure can also
be transformed to the Structure (b) in Fig. 4(b) when the
probability of B is zero.

In summary, the proposed structure is an integration of
Structure (a), (b) and (c), and it can thereby be transformed
to either one of them or in between them as changes the
probabilities of A, B and C. This property makes the structure
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more flexible and is capable of having a better trade-off among
the RD performance and complexity according to user’s
preferences or system objectives. That is the RD degradation
can varies from 0 to ωRD and complexity reduction varies
from 0 to ωC, where ωRD and ωC denote the maximum
RD degradation and complexity reduction achieved by
Structure (c).

Based on the above discussions, the challenging issues
are to design the three-output classifier and to determine the
probabilities of A, B and C, which are investigated in the next
sub-section.

C. Design of the Three-Output Classifier at CU DL i

There are many multi-class classifiers available for the
structure in Fig. 3(d). However, in the CU size depth decision,
the misclassifications of split or non-split mode have different
impacts on the coding performance. For example, in Fig. 3(d),
the false acceptance of non-split mode (A) degrades the
RD while the false acceptance of split mode (B) causes
complexity overhead as well as RD degradation. Besides,
choosing C in Fig. 3(d) is actually choosing both A and B.
To take advantage of these properties and minimize the com-
plexity in CU depth decision, we design a joint three-output
classifier which is flexible to tackle the classification problem
in Fig. 3(d).

Fig. 4 shows a flowchart of the joint classifier, which
consists of multiple binary classifiers from 1 to m and a voting
module. Given an input, each classifier will give a prediction
from O1 to Om with the binary results, 1 or −1. After that, the
voting module gives the finally output as 1, −1 or U, where
U indicates uncertain or high risk of false prediction. The joint
classifier has the following five properties:

1) Classifier #1 to #m can be either one learning machine
with different parameters or different learning machines;

2) Classifier #1 to #m can be a single classifier or
classifier group that optimized with boosting or
ensemble algorithms [22];

3) It includes more than two classifiers, i.e. m ≥2;
4) It can be employed for binary classification or

multi-class problem which depends on the properties of
the classifiers and the voting algorithm;

5) In the CU depth decision, if the prediction is the U,
conservative CU decision method, i.e. checks both
split and non-split mode, is adopted to determine the
CU depth.

Since SVM is robust and popular in solving the binary
classification problem, we employed the SVM with different
parameters and m is 2 for simplicity in this paper.

For a set of NA and NB training instances in Class A and B,
the i th training sample {xi , yi }NA+NB

i=1 , xi ∈ Rn, yi ∈ {−1, 1},
xi is a n-dimensional input feature vector and yi is the output
class label. Based on the SVM, there is a trained hyperplane
f (x) = wTφ (x) + b to discriminate the samples, where
φ() is a nonlinear operator. The hyperplane is constructed
by minimizing a cost function. In the paper, we adopt the
weighted SVM classifier, where the objective function is
increased by penalizes non-zero ξi and ξ j and the optimization
becomes a trade-off between a large margin and a small

error penalty. The optimization cost function is thus become
minimizing

J (w,w0, ξ )= 1

2
‖w‖2+CP

⎛
⎝WA

NA∑
i=1

ξi + WB

NA+NB∑
j=NA+1

ξi

⎞
⎠,

(1)

subject to

yi
[
wT xi + w0

] ≥ 1 − ξi , i = 1, 2, . . . , NA + NB

ξi ≥ 0, i = 1, 2, . . . NA + NB , (2)

where ξ is a vector of parameters ξi and ξ j . Parameter CP

is a positive constant that controls the relative influence of
the two competing terms. WA and WB are weighted factor for
Class A and Class B, respectively. The Lagrange multipliers
can be solved by

α∗ = arg max
α

NA+NB∑
i=1

αi

− 1

2

NA+NB∑
i=1

NA+NB∑
j=1

αiα j yi y j K
(
xi , x j

)
, (3)

subject to

NS∑
i=1

αi yi = 0, CP WA ≥ αi ≥ 0, i = 1, 2, . . . NA

NB∑
i=1

αi+NA yi+NA =0, CP WB ≥αNA+i ≥0, i = 1, 2, . . . NB ,

(4)

where αi is the Lagrange multipliers, K (xi , x j ) is the kernel
operator. Equation (3) can be solved based on the
Karush-Kuhn-Tucker conditions. The point xi with αi > 0
is called support vector. In this paper, Gaussian Radial Basis
Function (RBF) is employed as the kernel function since it
handles the non-linear case well and has fewer numerical
difficulties.

In the voting module, m output of classifiers Oi ,
i ∈ {1, 2, . . .m}, are combined to generate the output of joint
classier OALL as

OAL L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
m∑

i=1
Oi ≥ TA

U others

−1
m∑

i=1
Oi < TB,

(5)

where U is the output of uncertain prediction, which indicates
either positive (+1) or negative (−1) prediction has a high risk
of false prediction. TA and TB are thresholds for +1 and −1
prediction, respectively. A special case is when TA equals
to TB there is no uncertain output. When TA is larger than
the maximum value m and TB is smaller than the minimum
value −m, the output is all uncertain.

In a general classification, the misclassification of
Class A and B are treated equally and the hyperplane is
determined by maximizing the average prediction accuracy
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Fig. 5. Examples of Classification. (a) Traditional SVM. (b) Weighted SVM
Classifier #1 (WB > WA). (c) Weighted SVM Classifier #2 (WB < WA).
(d) Joint Classifier.

and margin. An example is shown in Fig. 5(a). However, in
the CU depth decision, the misclassification of Class A (split)
and B (non-split) leads to different costs. Therefore, the coef-
ficients WA and WB are employed to indicate different penalty
weights for the misclassification costs of Class A and B,
respectively. To reduce the False Acceptance Rate (FAR) of
Class A/B, we can enlarge WB or WA to give higher penalty to
the false acceptance of Class A/B. As shown in Fig. 5(b), the
hyperplane moves upward as WB increases. Thus, the FAR
of Class A increases and meanwhile the FAR of Class B
reduces. On the contrary, the hyperplane moves downward
as WA increases, and thereby the FAR of Class A can be
reduced, as shown in Fig. 5(c). As combined the two classifiers
together, the up-left instances of hyperplane #1 are classified
as Class A and the bottom-right instances of the hyperplane #2
are classified as Class B. The instances between the two
hyperplanes are determined as uncertain instances.

In the CU depth decision, the joint classifier can be applied
to predict the split and non-split mode with sufficient high
prediction accuracy by given a high value WA and WB .
Meanwhile, for the instances with uncertain prediction,
they are determined by full RDO comparison, which has
100% CU depth decision accuracy since it “tries all and
selects the best” and is identical to the original HM model.
Thus, the overall prediction accuracy of the CU depth decision
can be guaranteed to a required high level. In the example
in Fig. 5(d), only 4 samples (2 red circles and 2 blue triangles)
are misclassified.

D. Features Selection for CU Depth Decision

The aim of this paper is to reduce the computational
complexity of the CU depth decision while maintaining the
RD performance. Thus, the feature extraction process must be
low complexity to avoid the computation overheads. On the

other hand, the CU size mainly depends on the texture of
the video content, motion, context of temporal and spatial
neighboring information, etc. Based on these two principles,
we consider the nine features for INTER CU depth decision
as follow:

1) Information of the SKIP or Merge Mode in current CU.
Since the SKIP/MERGE mode of the current CU size is
with low complexity compared to other INTER modes,
the SKIP mode can be checked first and its output
information is helpful to the following CU depth
prediction. Thereby, the Coded Block Flag (CBF),
RD cost, total distortion, and total coding bits of the
SKIP/Merge mode are used as the features since they
indicate the INTER prediction error, video texture and
coding efficiency by using SKIP/Merge mode. They
are denoted as xCBF_Meg(i), xRD_Meg(i), xD_Meg(i),
xBit_Meg(i), respectively, where i indicates the CU depth.
In addition, SKIP flag after the merge mode is also used
as a feature, denoted xSKIP(i).

2) Motion information. Since the CU partition is highly
correlated with the motion in INTER frames, the
motion vectors of the MERGE mode xMV_Meg(i) can
be used as the feature. In this paper, it is defined as
xMV_Meg(i) = |MVx|+|MVy|, where MVx and MVy
are the horizontal and vertical motion.

3) Context information. Since the video content has
spatial correlation, the neighboring CU informa-
tion, including neighboring CU RD cost xNB_RD(i)
and CU depth xCU_depth(i), can be employed as
features. In this paper, xNB_RD(i) is the average
RD cost of the left and above CUs. xCU_depth(i)
is an average value of the CU depth, which is

xCU_depth (i) = 1
NL FT (i)+NABV (i)

NL FT (i)+NABV (i)∑
j=1

d j ,

where d j is the CU depth labels of the j th 4 × 4 unit.
For example, for a CU size with 16 × 16, there are 16
4 × 4 units labeled with 2. NL FT (i) and NABV (i) are
the number of 4 × 4 unit in left and above CUs with
depth i .

4) Quantization parameter xQP is also employed as a
feature since it is of higher probability to select large
CU size when QP becomes larger.

E. Training and Testing Mode

1) ONline Training Mode (ON-TM): In the ON-TM, some
frames of a sequence are encoded with the original encoder
and it outputs class labels and feature for model training. Then,
the successive frames are encoded and their CU depths are
predicted based on the trained model. The training frames
and models can be refreshed as demand. An example of
ON-TM is shown in Fig. 6(a), where the red dash lines
are training frames and the black solid lines are predict-
ing frames. The advantage of ON-TM is the properties of
the video (sequence) for the training and testing are quite
close. It is good for improving the prediction accuracy.
However, 1) the online training set is usually small;
2) the training frames are encoded without low complexity
optimization; 3) the training process is time consuming,
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Fig. 6. Training Mode. (a) Online. (b) Offline.

which has complexity overhead, especially for the case of
using large training set and complicated learning algorithm;
4) the encoder shall integrate the learning algorithm as well as
the training process which is not easy for hardware
implementation; 5) complicated learning algorithm and multi-
pass training will increase the complexity overhead. This
ON-TM mode is suitable for the case that features and learning
model are highly sensitive to the content.

2) OFFline Training Mode (OFF-TM): For the OFF-TM,
multiple video sequences with different properties are encoded
with the original encoder to generate the training data. Then,
we use an offline learning algorithm to train a model. Finally,
the learned model is loaded into the learning based encoder to
encode the video sequences, as shown in Fig. 6(b). The
OFF-TM can well solve the above mentioned five shortcom-
ings in ON-TM. In addition, optimal model parameters can be
obtained via sophisticated learning or multiple-pass training.
Since the correlation and statistical properties of the CU is
not highly content dependent and there are many advantages
of this OFF-TM mode. We thus adopt the OFF-TM mode for
model training in this paper. Besides, we could include diverse
video content, motions, properties, textures, resolutions, and
coding parameters (e.g. different QPs) in this mode to train a
robust and better learning model.

IV. OPTIMAL PARAMETER DETERMINATION

FOR THE COMPLEXITY ALLOCATION

In this section, we analyze the prediction accuracy of the
proposed SVM predictor in CU depth decision. Then, we
present a weighted factor determination algorithm for the
model training so as to have a good trade-off between the
RD cost increase and complexity reduction in CU depth
prediction.

A. Prediction Accuracy Analysis for the SVM Predictor

Let NA and NB be the number of instances labeled as
Class A and Class B in ground truth, respectively. NAA,k is
the number of Class A instances that have been correctly

classified as Class A by the SVM classifier #k. NAB,k is the
number of Class A instances that have been falsely classified
as Class B by the classifier #k. Similarly, NB B,k and NB A,k are
the number of Class B instances that have been correctly or
falsely classified. NA = NAA,k +NAB,k , NB = NB B,k+NB A,k .
The prediction accuracy of classifier #k for Class A, B and
overall samples can be calculated as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

PA,k = NAA,k

NAA,k + NB A,k

PB,k = NB B,k

NB B,k + NAB,k

Pk = NAA,k + NB B,k

NA + NB
,

(6)

To analyze the prediction accuracy of the SVM classifier,
we statistically analyzed the PA,k , PB ,k and Pk with the
samples collected from the video coding process. The training
and testing samples were collected by the HEVC coding
process with the original HM encoder. Two sequences,
BQMall and FourPeople, 20 frames for each sequence,
were encoded with four QPs, which are 24, 28, 32, and 36.
There are 20090, 22725 and 36345 total samples respectively
from DL 1 to 3. Sixty percent of them were used in
model training and the rest of them were used for testing.
The ratio of positive samples to negative samples of each
DL are 1:2.45, 1:1.48 and 1:2.95, respectively, which
means the number of positive (split mode) and negative
(non-split mode) samples are generally in balance.
C-SVM [23] with different weighted factors (WA and WB)
are employed. For each DL, we trained and tested the model
multiple times with different weighted factors (WA, WB),
and finally collected the PA,k , PB ,k , and Pk . The weighted
factors WA and WB are set as {(WA, WB)|1 ≤ WA ≤ 10,
WA ∈ N, WB = 1} ∪ {(WA, WB)|1 ≤ WB ≤ 10, WB ∈ N,
WA = 1}. Thus, there are 20 pairs of (WA, WB) in total in
each DL.

Fig. 7 shows the prediction accuracy (PA,k , PB ,k and Pk)
for the SVM classifier with different weighted factors. We can
find that from DL1 to DL3 the PA,k and PB ,k are monotonic
and can reach up to 100% as the ratio WA/WB properly
changes. As shown in Fig. 5(c), as WA/WB increases, more
samples of Class B are falsely classified as Class A and less
Class A samples are falsely classified as Class B. Thus, NB A,k

increases and PA,k decreases. The prediction accuracy for
Class B (PB,k ) can be deduced in a similar way. The
Pk value achieves its peak when WB /WA is 1, which equally
treats the positive and negative samples. The peak Pk from
DL1 to DL3 are 90.21%, 82.62%, 79.42%, respectively,
which are the maximum prediction accuracy of using a single
SVM predictor in the CU depth prediction. These values
indicate that using a single SVM with given features and
training way is not accurate enough and may cause large RD
degradation in CU depth prediction.

We thus combined these two SVM classifiers with different
WB/WA together to formulate the joint classifier shown
in Fig. 4. The uncertain CUs are encoded by the original
RDO process and its prediction can be regarded
as 100% correct. The overall prediction accuracy of the
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Fig. 7. Prediction accuracy for SVM classifier with different weighted factors.
(a) DL 1. (b) DL 2. (c) DL 3.

joint classifier can be presented as

Q AL L = NAA,1 + NB B,2 + NR D

NA + NB
= 1 − NB A,1 + NAB,2

NA + NB
.

(7)

where NR D = NAB,1 + NB B,1 − NB B,2 − NAB,2 is the
number of uncertain predicted instances (dashed samples
in Fig. 5(d)), which will be determined by the RD comparison
in the HM. As the number NR D increases, the prediction
accuracy of QALL will increase. However, the complexity
reduction will decrease since the number of un-optimized
CUs (NRD) increases.

Fig. 8 shows the prediction accuracy of the joint classifier
consist of two SVM classifiers with different weighted factors
at DL 1. We can find that the curved surfaces are symmetrical
with the x = y since the two classifiers are the same

Fig. 8. 1-QALL of the joint classifier (DL 1).

Fig. 9. The ratio of NRD to NAL L (DL 1).

learning machine. When WA/WB increases for classifier #1 and
decreases for classifier #2, the 1-QALL decreases from 22%
to 0%. That means that the prediction accuracy of the joint
classifier (QALL) is able to vary from 78% to 100%, which
guarantees the prediction accuracy and RD performance in CU
depth decision. Fig. 9 shows the ratio of un-optimized CUs,
i.e. NRD. Similarly, curved surfaces are also symmetrical with
x = y. Meanwhile, the NRD ratio increases as WA/WB
increases in classifier #1 and decreases in classifier #2. In other
word, the prediction accuracy QALL increases; however, the
NRD ratio also increases. This direct proportion between
QALL and NRD ratio indicates the complexity reduction
is in direct proportional to the RD degradation. Similar
results can be found for DL 2 and 3. Therefore, there is a
trade-off between NR D (complexity) and prediction accuracy
QALL (RD degradation) with respect to the optimal parameters
WA/WB , which shall be determined.

B. Optimal Weighted Factor Determination

In this sub-section, we firstly analyze RD cost increase
and complexity reduction, then model the trade-off between
the two performances as an optimization problem. Finally,
the optimal solution (WA/WB) to the optimization problem
is given.

To analyze the RD cost caused by misclassification, we let
�ηS→nS(i) be the RD cost increase when we use non-split
mode to encode the CU of split mode. It is defined as
�ηS→nS(i) = (JnS(i)/JBest(i) − 1)×100%, where i is the
CU DL i , i ∈ {1,2,3}, JnS(i) and JBest(i) are the RD cost
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of using non-split mode and the best mode in encoding the
current CU, respectively. Similarly, let �ηnS→S(i) be the
RD cost increase when we use split mode to encode the non-
split CUs and �ηnS→S(i) = (JS(i)/JBest(i) − 1) × 100%,
where JS(i) is the RD cost of using split mode to encode the
current CU. The RD cost increase at DL i is

�η (i)=�ηnS→S (i)× pB A(i)+�ηS→nS (i)× pAB(i),

(8)

where pB A(i) = NB A,1(i)/NAL L (i), pAB(i) = NAB,2(i)/
NAL L (i) are the ratio of false prediction of split or non-split
modes at DL i , NAL L (i) is the total number of CUs that needs
prediction in DL i , and NAL L (1) is the number of CUs in a
frame.

To analyze the complexity reduction of CU split/non-
split prediction, let qS,1(i) = NS,1(i)/NAL L (i) and
qnS,2(i) = NnS,2(i)/NAL L (i) be the percentages of split
mode and non-split mode predictions by the joint classifier,
respectively. NS,1(i) and NnS,2(i) are the number of CU clas-
sified as split and non-split mode by the classifier #1 and #2
in the joint classifier. The uncertain prediction is neither split
nor non-split prediction. The time reduction of DL i can be
calculated as

�T (i) = �TS (i)× qS,1 (i)+�TnS (i)× qnS,2 (i), (9)

where �TS(i) and �TnS(i) are the time saving ratio by
using the split and non-split prediction at DL i ,
�TS(i) = 1 − TS(i)/TAL L(i), �TnS(i) = 1 − TnS(i)/TAL L(i),
where TS(i), TnS(i) and TALL(i) are complexity of using split,
non-split and all modes, respectively.

The optimization problem of each joint classifier can be
modeled as minimizing the computational complexity of the
encoder 1−�T (i) subject to negligible RD cost increase,
which can be mathematically presented as

min
xi ,yi

1 −�T (i), s.t . �η (i) ≤ �ηT ,i , (10)

where xi and yi are the model parameters for the joint classifier

at DL i , i.e. xi = log
(

WA(1,i)
WB(1,i)

)
, yi = log

(
WA(2,i)
WB(2,i)

)
, where i is

the DL, 1 and 2 indicate SVM classifier #1 and #2 of the joint
classifier. �ηT ,i is upper bound of RD cost increase.

Based on the training data from video coding mentioned in
Section IV.A, we collected pB A(i) and pAB(i) when different
training factors WA and WB were used for the DLs, as shown
in Fig. 10. In the figures, the x-axis is the weighted parameter,
log(WA/WB), i.e. xi or yi, y-axis is pB A(i) or pAB(i). The
dots are real collected data and curves are the fitting results.
We fitted pB A(i) and pAB(i) with exponential growth and
linear functions, respectively, and the fitting model can be
presented as

{
pB A (i) = bi + ai e

xi
ti

pAB (i) = Bi + Ai yi ,
(11)

where bi , ai , ti , Bi and Ai are model parameters, xi and yi

are log functions of weighted coefficients (WA/WB). The
bottom two rows of TABLE II shows the fitting parameters
and fitting accuracy (R2) for Fig. 10. The R2 values are all

Fig. 10. False Prediction Rate from DL 1 to DL 3 with Different Weighted
Factors. (a) DL1. (b) DL 2. (c) DL 3.

higher than 0.954 which means the fitting accuracies are good.
Then, applying Eq.11 to Eq.8, the RD cost increase can be
presented as

�η (i) = C1 (i)+ k1 (i) e
xi
ti + k2 (i) yi (12)

where C1(i) = �ηS→nS(i)Bi + �ηnS→S(i)bi . k1(i) =
�ηnS→S(i)ai , k2(i) = �ηS→nS(i)Ai ,

Fig. 11 show the percentage of split mode qS,k(i) for a
SVM classifier that collected from the off-line training. In the
figure, the points with different symbols are the real data
and the curves are the exponential fitting of these points.
qs,k(i) can be modeled as

qS,k (i) = ui + vi e
xi
Ti , (13)
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TABLE II

FITTING PARAMETERS AND FITTING ACCURACY

Fig. 11. Percentage of Split Mode qS,k(i) in DL 1 to DL 3.

where ui, vi and Ti are parameters for DL i . In terms of the
same SVM classifier #k, qnS,k(i) = 1 − qS,k(i). Therefore,
apply Eq.13 to Eq.9, we can obtain the complexity reduction
of each DL as

�T (i) = C2 (i)+ h1 (i) e
xi
Ti − h2 (i) e

yi
Ti , (14)

where C2(i) = �TnS(i)ui +�TS(i)(1−ui ), h1(i) = �TS(i)vi ,
h2(i) = �TnS(i)vi . The middle rows of TABLE II shows
the fitting parameters and fitting accuracy for the qs,k(i)
in Fig. 11, where the R2 value are higher than 0.963. In addi-
tion, TABLE II also shows the average �TnS(i), �TS(i),
�ηS→nS(i) and�ηnS→S(i) that are statistically collected from
the training videos.

To solve the problem in Eq.10, we introduce the Lagrange
multiplier λi, and the optimization becomes

⎧⎨
⎩
{xi , yi } = arg min

xi ,yi

J (i)

J (i) = 1 −�T (i)+ λi
(
�η (i)−�ηT ,i

)
.

(15)

We apply Eqs.12 and 14 to Eq.15 and it is easy to prove that
Eq.15 is convex. To get the optimal xi and yi , we take the
partial derivation with respect to xi , yi and λi , then set them

to 0 and get
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ J (i)

∂xi
=
∂

(
−h1 (i) e

xi
Ti + λi k1e

xi
ti

)

∂xi

= − h1(i)
Ti

e
xi
Ti + λi k1(i)

ti
e

xi
ti = 0

∂ J (i)

∂yi
=
∂

(
λi k2 (i) yi + h2 (i) e

yi
Ti

)

∂yi

= λi k2 (i)+ h2 (i)

Ti
e

yi
Ti = 0

∂ J (i)

∂λi
= C1 (i)+ k1 (i) e

xi
ti + k2 (i) yi −�ηT ,i = 0.

(16)

Solve these equations, we obtain
⎧⎪⎪⎨
⎪⎪⎩

xi = ti Ti

Ti − ti
ln

ti h1 (i)

λi Ti k1 (i)

yi = Ti ln
−λi k2 (i) Ti

h2 (i)
,

(17)

C1 (i)+ k1 (i)

(
ti h1 (i)

λi Ti k1 (i)

) Ti
Ti −ti

+ k2 (i) Ti ln
−λi k2 (i) Ti

h2 (i)
−�ηT ,i = 0 (18)

In Eq.18, λi is a function of �ηT ,i . Only �ηT ,i is a para-
meter and other variables are constants. Though the mapping
function cannot be explicitly presented, it can be calculated by
least square method with a given �ηT ,i . Then, apply this λi

to Eq.17 and we can get the optimal xi , yi (i.e. WA/WB) for
the joint classifier. �ηT ,i is the RD increase ratio for DL i .
Basically, �ηT ,i indicates the allowable percentage of RD cost
increase for each DL and it can be given according to the
complexity and coding efficiency requirements of the video
encoding system.

V. EXPERIMENTAL RESULTS AND ANALYSES

To evaluate the performance of the proposed algorithm, we
implemented the proposed algorithm and benchmarks on the
HEVC reference software HM12.0 [24]. Low delay B main
profile was used in the coding experiments, the first frame
was encoded with INTRA and the rest of the frames were
encoded with low delay B frames. The sizes of LCU and
SCU are 64 × 64 and 8 × 8, respectively, which means
the maximum CU depth is 4. GOP size is 4. The minimum
and maximum RQT transform size is 4 and 32, respectively.
Motion search range is 64. Other parameters were set as
default. The proposed algorithm was implemented on HM12.0
and tested with the common test conditions [25]. C-SVM [23]
was adopted in model training and CU depth predicting in the
proposed encoder. CP is set as 100 and the rest parameters
of the C-SVM classifiers were set as default. All the video
coding experiments were performed on computer with CPU
AMD Athlon IIX2 B24, 2.99GHz, 2 GB memory, Window
XP operating system. Bjonteggard Delta Bit Rate (BDBR)
and Peak-Signal-to-Noise Ratio (BDPSNR) [26] are applied
to evaluate the RD performance of different schemes as com-
pared with the original HM. Additionally, time saving (�T ) is
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employed to measure the time reduction of the tested schemes,
which is defined as

�T = 1

4

∑4

i=1

TH M (Q Pi )− Tψ (Q Pi )

TH M (Q Pi )
· 100%, (19)

where THM(QPi ) and T� (QPi ) are the encoding time of using
the original HM [24] and scheme � with QPi .

There are two phases of the coding performance evaluation.
One is testing the coding performance of the proposed algo-
rithm while using different parameters, and the other is make
comparison between the proposed algorithm and the state-of-
the-art benchmarks.

A. Coding Performance of Using Different Parameters (ΔηT ,i)

We tested the coding performance of using different para-
meters for the proposed algorithm. The lower DL usually
has higher potential of complexity reduction. Thus, we shall
give the lower DL with higher �ηT ,i to maximize the
total �T . In order to verify this phenomena, we tested the
proposed algorithm with different �ηT ,i at the three DLs.
Five test sequences with different resolutions, including
Basketballpass (416 × 240), Partyscene (832 × 480),
Johnny (1280 × 720), Kimono (1920 × 1080), Traffic
(2560 × 1600), were encoded with different�ηT ,i . 100 frames
were encoded for each sequence. The first set of �ηT ,i for the
three DLs {�ηT ,1,�ηT ,2,�ηT ,3} are set equally, which are
{0.1%,0.1%, 0.1%}, {0.3%,0.3%,0.3%}, {0.5%, 0.5%,0.5%},
{0.7%,0.7%, 0.7%}, denoted as Para_111, Para_333, Para_555
and Para_777. In addition, {0.3%, 0.2%, 0.1%}, {0.6%, 0.4%,
0.2%}, {0.9%, 0.6%, 0.3%}, denoted as Para_321, Para_642,
Para_963, are also tested. With a given {�ηT ,1,�ηT ,2,�ηT ,3},
the first 20 frames of BQMall and FourPeople were encoded
with four QPs {24,28,32,36} by the original HM, and then the
features and class labels are input in SVM training module.
The trained SVM models with different WA and WB that
calculated from Eq.17 with given �ηT ,i are then input in the
proposed encoder to encode the five test sequences.

Fig. 12 show the relationship between average complexity
reduction and average BDBR/BDPSNR for different parameter
sets. The average BDBR/BDPSNR and complexity reduction
are average values over the five test sequences. In the figure,
we can observe that 1) the BDBR, BDPSNR and complexity
reduction increases as we choose larger �ηT ,i . 2) The BDBR
is generally in direct proportional to the complexity and
BDPSNR is in inverse proportional to the complexity. 3) The
red and black lines are formulated by connecting solid and
hollow dots respectively. The red solid line is above the black
dash line which means the in-equally parameter set has a better
performance than the equal parameter setting, since it reduces
more computational complexity at the same BDPSNR/BDBR.
In this paper, the optimization target is to minimize the
computational complexity subject negligible RD degradation,
we therefore select Para_642 set since it has a better trade-
off between the two indices and BDBR is within 1.68%.
The optimal parameters �ηT ,i shall be selected based on the
coding system’s requirements. Also, they may changes along
tested video content. There might be other parameter sets that
can allocate the complexity better. However, they are not fully

Fig. 12. Relation Between Average Complexity Reduction and Average
BDBR/BDPSNR over Different �ηT ,i Sets. (a) Complexity reduction vs
BDBR. (b) Complexity reduction vs BDPSNR.

Fig. 13. CU Prediction by the Proposed Algorithm (BasketballDrill,
832×480). (a) False predicted CUs. (b) CU prediction in DL1. (c) CU
prediction in DL2. (d) CU prediction in DL3.

enumerated in this paper. Actually, there is “Pareto front” and
“Pareto optimal” of selecting �ηT ,i set, which can be solved
and presented by the multi-objective optimization.

Figs. 13 and 14 show the CU prediction by the proposed
algorithm when QP equals 28 for BasketballDrill and
ParkScene sequence, where the grids in the pictures are
the ground truth CU partition produced by the origi-
nal HM. The Para_642 is selected for the proposed encoder.
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TABLE III

RD AND COMPLEXITY REDUCTION COMPARISONS BETWEEN THE PROPOSED ALGORITHM AND THE BENCHMARKS (UNIT: %/dB/%)

Fig. 14. CU Prediction by the Proposed Algorithm (ParkScene, 1920×1080).
(a) False predicted CUs. (b) CU prediction in DL1. (c) CU prediction in DL2.
(d) CU prediction in DL3.

Figs. 13(a) and 14(a) show the false predicted CUs that are
labeled with red, blue and purple color for DL1 to DL3.
Figs. 13(b) to 13(d) and Figs 14(b) to 14(d) show the
CU prediction for DL1 to DL3, where red color blocks are
non-split prediction, green are split prediction, the original
blocks are uncertain prediction which are checked by the
RDO process. The white blocks are the CUs early terminated
by the upper DL and are not necessary to be checked in the
current DL. We can have the following three observations;
1) the number of false predicted CUs is relative small com-
pared the whole image and the prediction accuracy in each
DL is generally higher than 90%. 2) Most CUs are effectively
predicted by the proposed algorithm with split or non-split
mode, and only a few CUs are predicted with uncertain.

3) The red color blocks possess a large proportion which
early terminate the recursive CU checking process that is not
necessary to be further checked. For the green blocks, they
skip the checking of the current CU depth and will be checked
in next DLs. Actually, when we select model trained from
stricter �ηT ,i , e.g. Para_321 and Para_111, the number of
false predicted CUs reduces. However, the number of blocks
with uncertain prediction in DL1 to DL3 (the original blocks)
increases, which indicates the proposed encoder can adapt to
applications with different complexity and RD requirements.

B. Coding Performance Comparison Among the Proposed
Algorithm and the State-of-the-Art Schemes

In this phase, we evaluated the coding performance
of the proposed algorithm in a more comprehensive
way and make a comparison with three benchmarks,
including Xiong’s scheme [3] (denoted by XiongTMM)
X. Shen’s scheme [19] (denoted by ShenJIVP) and
L. Shen’s scheme [5] (denoted by ShenTMM). Twenty-one
diverse test sequences from Class A to Class E were employed
in the coding experiment, and all frames of the test sequences
were encoded with four QPs, which are 22, 27, 32 and 37.
Low delay B main configuration was used and encoding
settings followed the common test conditions [25]. The SVM
models used the proposed encoder were trained with Para_642
and training dataset from the first 20 frames of BQMall
and FourPeople encoded by the original HM with four
QPs {24,28,32,36}.

The BDBR, BDPSNR and �T comparisons among the pro-
posed algorithm and the benchmarks are shown in TABLE III.
In ShenEVIP scheme, the training sequences, number of
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frames and encoding QPs are the same as the proposed
algorithm. We can observe that ShenEVIP can reduce the
complexity from 26.46% to 70.32%, 49.25% on average
compared with the original HM. The BDBR and BDPSNR
between ShenEVIP and HM are 4.73% and −0.155dB on
average, respectively. Though ShenEVIP achieves a significant
complexity reduction, the RD degradation is also significant.
The main reason is that it is difficult to maintain suffi-
cient high prediction accuracy of the classifier for different
QPs and various contents, and misclassification causes
RD degradation. The complexity reduction of ShenTMM is
from 24.55% to 55.00%, and 37.29% on average. The BDBR
and BDPSNR between ShenTMM and HM are 2.37% and
−0.074dB. XiongTMM scheme achieves complexity reduction
from 26.73% to 61.13%, and 45.57% on average. However,
the BDPSNR degradation is −0.219dB and BDBR increase
is 7.11%. For this scheme, the FIFO structure of CU mode
prediction may lead to error prorogation as well as
RD degradation when using different QPs along the frames.
In addition, the FIFO structure can hardly fully exploit the
spatial and temporal correlation of the video content, since
the upper CU and temporal collocated CU may be out of the
FIFOs, especially for HD videos.

As for the proposed algorithm, it achieves complexity
reduction from 28.82% to 70.93%, and 51.45% on average,
which is better than those of ShenEVIP, ShenTMM and
XiongTMM. Meanwhile, the BDPSNR degradation between
the proposed algorithm and HM is within 0.030dB to 0.097dB,
0.061dB on average. The BDBR increase is from 0.84% to
3.70%, 1.98% on average. In addition, we also tested the
proposed algorithm with another training model that trained
from “BasketballDrill” and “KristenAndSara” sequences with
four QPs {24,28,32,36}. Similar coding results can be found.
From the overall performance evaluation we can find that
the proposed fast CU depth decision algorithm can achieve
more complexity reduction and cost less RD degradation when
compared with the benchmarks.

VI. CONCLUSION

In this paper, we proposed an efficient machine learning
based CU depth decision method. Firstly, we analyze CU depth
decision process in HEVC and model the CU depth decision
process as a three-level of hierarchical decision problem.
Secondly, we present an improved CU depth decision structure
which allows the performances of the CU depth decision can
be transferred between the complexity and RD cost. Then,
a three-output classifier is designed to control the risk of
false prediction. Finally, a sophisticated RD-complexity model
is derived for the optimal training parameter determination,
which is capable of allocating the computation complexity of
each CU DL at given allowable RD cost increase. The com-
parative experimental results demonstrate that the proposed
algorithm is effective.
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